
Gordon Documentation
Release 0.7.0

Jorge Bastida

Dec 14, 2017





Contents

1 First Steps 3
1.1 Installation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 Quickstart . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Documentation 13
2.1 Project . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.2 Lambdas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.3 Lambda Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
2.4 Event Sources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
2.5 Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
2.6 Contexts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
2.7 Running lambdas locally . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
2.8 Running lambdas in AWS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

3 In detail 55
3.1 Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
3.2 Advanced Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
3.3 gordon.contrib . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
3.4 Setup AWS Credentials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
3.5 FAQ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

4 Tutorials 61
4.1 My first Javascript Lambda . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
4.2 My first Python Lambda . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

i



ii



Gordon Documentation, Release 0.7.0

Welcome to Gordon’s documentation. I recommend that you get started with Installation and then head over to the
Quickstart. Besides the Quickstart, there are also several tutorials for some of the different available event sources.

If you are the kind of person who wants to learn by example, there are lot’s in our Examples directory in github.

Contents 1

https://github.com/jorgebastida/gordon/tree/master/examples


Gordon Documentation, Release 0.7.0

2 Contents



CHAPTER 1

First Steps

Your first steps using gordon.

1.1 Installation

Gordon requires several python libraries, but all of them should get installed seamlessly using pip.

1.1.1 Using pip

$ pip install gordon

If you are on OSX El Capitan, use the following (Why? Check Donald Stufft’s comment in pypa/pip)

$ pip install gordon --ignore-installed six

1.1.2 Development version

The source code of Gordon is available on Github https://github.com/jorgebastida/gordon/.

You can install this version using:

$ python setup.py develop

1.1.3 What next?

Give it a look to the Quickstart where you’ll create your first Gordon project!

3

https://github.com/pypa/pip/issues/3165#issuecomment-145856429
https://github.com/jorgebastida/gordon/


Gordon Documentation, Release 0.7.0

1.2 Quickstart

In which language you feel more comfortable?

1.2.1 Quickstart: Python

Now that you have Gordon installed, let’s create our first project. Before doing so, you need to understand how Gordon
projects are structured.

A Gordon project consist in one or more applications. The term application describes a directory that provides some
set of features. Applications may be reused in various projects.

Requirements for python lambdas:

• pip: https://pypi.python.org/pypi/pip

Creating a project

From the command line, cd into a directory where you’d like to store your code, then run the following command:

$ gordon startproject demo

This will create a demo directory in your current directory with the following structure:

demo
- settings.yml

As you can imagine that settings.yml file will contain most of our project-wide settings. If you want to know more,
Settings will tell you how the settings work.

Creating an application

Now that we have our project created, we need to create our first app. Run the following command from the command
line:

$ gordon startapp firstapp

Note: You can create lambdas in any of the AWS supported languages (Python, Javascript and Java) and you can mix
them within the same project and app. By default startapp uses the python runtime, but you can pick a different
one by adding --runtime=js|java to it.

This will create a firstapp directory inside your project with the following structure:

firstapp/
- helloworld
| - code.py
- settings.yml

These files are:

• code.py : File where the source code of our first helloworld lambda will be. By default gordon creates a
function called handler inside this file and registers it as the main handler.

4 Chapter 1. First Steps

https://pypi.python.org/pypi/pip


Gordon Documentation, Release 0.7.0

• settings.yml : Configuration related to this application. By default gordon registers a helloworld
lambda function.

Once you understands how everything works, and you start developing your app, you’ll rename/remove this function,
but to start with we think this is the easiest way for you to understand how everything works.

Give it a look to firstapp/settings.yml and firstapp/helloworld/code.py files in order to get a
better understanding of what gordon just created for you.

Now that we know what these files does, we need to install this firstapp. In order to do so, open your project
settings.yml and add firstapp to the apps list:

---
project: demo
default-region: us-east-1
code-bucket: gordon-demo-5f1fb41f
apps:

- gordon.contrib.lambdas
- firstapp

This will make Gordon take count of the resources registered within the firstapp application.

Build your project

Now that your project is ready, you need to build it. You’ll need to repeat this step every time you make some local
changes and want to deploy them to AWS.

From the command line, cd into the project root, then run the following command:

$ gordon build

This command will have an output similar to:

$ gordon build
Loading project resources
Loading installed applications

contrib_lambdas:
X version

firstapp:
X helloworld

Building project...
X 0001_p.json

X lambda:contrib_lambdas:version
X lambda:firstapp:helloworld

X 0002_pr_r.json
X 0003_r.json

What is all this? Well, without going into much detail, gordon has just decided that deploying you application implies three stages.

• 0001_p.json gordon is going to create a s3 bucket where the code of your lambdas will be uploaded.

• 0002_pr_r.json gordon will upload the code of your lambdas to S3.

• 0003_r.json gordon will create your lambdas.

But, should I care? No you should not really care much at this moment about what is going on. The only important
part is that you’ll now see a new _build directory in your project path. That directory contains everything gordon
needs to put your lambdas live.

1.2. Quickstart 5



Gordon Documentation, Release 0.7.0

If you want to read more about the internals of gordon project, you read more in the Project page.

Deploy your project

Deploying a project is a as easy as using the apply command:

$ gordon apply

Note: It is important that you make your AWS credential available in your terminal before, so gordon can use them.
For more information: Setup AWS Credentials

This command will have an output similar to:

$ gordon apply
Applying project...

0001_p.json (cloudformation)
CREATE_COMPLETE waiting...

0002_pr_r.json (custom)
X code/contrib_lambdas_version.zip (da0684c2)
X code/firstapp_helloworld.zip (45da7d76)

0003_r.json (cloudformation)
CREATE_COMPLETE waiting...

Your lambdas are ready to be used! Navigate to AWS: Lambdas to test them.

What next?

You should have a basic understanding of how Gordon works. We recommend you to dig a bit deeper and explore:

• Project Details about how you can customize your projects

• Lambdas In-depth exmplanation of how lambdas work.

• Event Sources List of all resources and integrations you can create using Gordon.

1.2.2 Quickstart: Javascript

Now that you have Gordon installed, let’s create our first project. Before doing so, you need to understand how Gordon
projects are structured.

A Gordon project consist in one or more applications. The term application describes a directory that provides some
set of features. Applications may be reused in various projects.

Requirements for Javascript lambdas:

• npm: https://nodejs.org/en/download/

Creating a project

From the command line, cd into a directory where you’d like to store your code, then run the following command:

$ gordon startproject demo

This will create a demo directory in your current directory with the following structure:

6 Chapter 1. First Steps

https://console.aws.amazon.com/lambda/home
https://nodejs.org/en/download/


Gordon Documentation, Release 0.7.0

demo
- settings.yml

As you can imagine that settings.yml file will contain most of our project-wide settings. If you want to know more,
Settings will tell you how the settings work.

Creating an application

Now that we have our project created, we need to create our first app. Run the following command from the command
line:

$ gordon startapp firstapp --runtime=js

Note: You can create lambdas in any of the AWS supported languages (Python, Javascript and Java) and you can mix
them within the same project and app. By default startapp uses the python runtime, but you can pick a different
one by adding --runtime=py|java to it.

This will create a firstapp directory inside your project with the following structure:

firstapp/
- helloworld
| - code.js
- settings.yml

Note: If you pick python or java as runtime, the layout will not be 100% the same, but pretty similar.

These files are:

• code.js : File where the source code of our first helloworld lambda will be. By default gordon creates a
function called handler inside this file and registers it as the main handler.

• settings.yml : Configuration related to this application. By default gordon registers a helloworld
lambda function.

Once you understand how everything works, and you start developing your app, you’ll rename/remove this function,
but to start with we think this is the easiest way for you to understand how everything works.

Give it a look to firstapp/settings.yml and firstapp/helloworld/code.js files in order to get a
better understanding of what gordon just created for you.

Now that we know what these files does, we need to install this firstapp. In order to do so, open your project
settings.yml and add firstapp to the apps list:

---
project: demo
default-region: us-east-1
code-bucket: gordon-demo-5f1fb41f
apps:

- gordon.contrib.lambdas
- firstapp

This will make Gordon take count of the resources registered within the firstapp application.

1.2. Quickstart 7



Gordon Documentation, Release 0.7.0

Build your project

Now that your project is ready, you need to build it. You’ll need to repeat this step every single time you make some
local changes and want to deploy them to AWS.

From the command line, cd into the project root, then run the following command:

$ gordon build

This command will have an output similar to:

$ gordon build
Loading project resources
Loading installed applications

contrib_lambdas:
X version

firstapp:
X helloworld

Building project...
X 0001_p.json

X lambda:contrib_lambdas:version
X lambda:firstapp:helloworld

X 0002_pr_r.json
X 0003_r.json

What is all this? Well, without going into much detail, gordon has just decided that deploying you application implies three stages.

• 0001_p.json gordon is going to create a s3 bucket where the code of your lambdas will be uploaded.

• 0002_pr_r.json gordon will upload the code of your lambdas to S3.

• 0003_r.json gordon will create your lambdas.

But, should I care? No you should not really care much at this moment about what is going on. The only important
part is that you’ll now see a new _build directory in your project path. That directory contains everything gordon
needs to put your lambdas live.

If you want to read more about the internals of gordon project, you read more in the Project page.

Deploy your project

Deploying a project is a as easy as using the apply command:

$ gordon apply

Note: It is important that you make your AWS credential available in your terminal before, so gordon can use them.
For more information: Setup AWS Credentials

This command will have an output similar to:

$ gordon apply
Applying project...

0001_p.json (cloudformation)
CREATE_COMPLETE waiting...

0002_pr_r.json (custom)
X code/contrib_lambdas_version.zip (da0684c2)

8 Chapter 1. First Steps



Gordon Documentation, Release 0.7.0

X code/firstapp_helloworld.zip (45da7d76)
0003_r.json (cloudformation)
CREATE_COMPLETE waiting...

Your lambdas are ready to be used! Navigate to AWS: Lambdas to test them.

What next?

You should have a basic understanding of how Gordon works. We recommend you to dig a bit deeper and explore:

• Project Details about how you can customize your projects

• Lambdas In-depth exmplanation of how lambdas work.

• Event Sources List of all resources and integrations you can create using Gordon.

1.2.3 Quickstart: Java

Now that you have Gordon installed, let’s create our first project. Before doing so, you need to understand how Gordon
projects are structured.

A Gordon project consists of one or more applications. The term application describes a directory that provides some
set of features. Applications may be reused in various projects.

Requirements for Java lambdas:

• gradle: http://gradle.org/gradle-download/

Creating a project

From the command line, cd into a directory where you’d like to store your code, then run the following command:

$ gordon startproject demo

This will create a demo directory in your current directory with the following structure:

demo
- settings.yml

As you can imagine that settings.yml file will contain most of our project-wide settings. If you want to know more,
Settings will tell you how the settings work.

Creating an application

Now that we have our project created, we need to create our first app. Run the following command from the command
line:

$ gordon startapp firstapp --runtime=java

Note: You can create lambdas in any of the AWS supported languages (Python, Javascript and Java) and you can mix
them within the same project and app. By default startapp uses the python runtime, but you can pick a different
one by adding --runtime=py|javascript to it.

1.2. Quickstart 9

https://console.aws.amazon.com/lambda/home
http://gradle.org/gradle-download/


Gordon Documentation, Release 0.7.0

This will create a firstapp directory inside your project with the following structure:

firstapp/
- helloworld
| - build.gradle
| - src
| - main
| - java
| - helloworld
| - Hello.java
- settings.yml

Note: If you pick python or js as runtime, the layout will not be 100% the same, but pretty similar.

These files are:

• helloworld.java : File where the source code of our first helloworld lambda will be. By default gordon
creates a function called handler in this file.

• build.gradle : Gradle file gordon will use to build your lambda.

• settings.yml : Configuration related to this application. By default gordon registers a helloworld
lambda the function within Hello.java.

Once you understand how everything works, and you start developing your app, you’ll rename/remove this function,
but to start with we think this is the easiest way for you to understand how everything works.

Give it a look to firstapp/settings.yml and firstapp/helloworld/src/main/java/
helloworld/Hello.java files in order to get a better understanding of what gordon just created for
you.

Now that we know what these files does, we need to install this firstapp. In order to do so, open your project
settings.yml and add firstapp to the apps list:

---
project: demo
default-region: us-east-1
code-bucket: gordon-demo-5f1fb41f
apps:

- gordon.contrib.lambdas
- firstapp

This will make Gordon take count of the resources registered within the firstapp application.

Build your project

Now that your project is ready, you need to build it. You’ll need to repeat this step every single time you make some
local changes and want to deploy them to AWS.

From the command line, cd into the project root, then run the following command:

$ gordon build

This command will have an output similar to:

$ gordon build
Loading project resources

10 Chapter 1. First Steps



Gordon Documentation, Release 0.7.0

Loading installed applications
contrib_lambdas:

X version
firstapp:

X helloworld
Building project...

X 0001_p.json
X 0002_pr_r.json
X 0003_r.json

What is all this? Well, without going into much detail, gordon has just decided that deploying you application implies three stages.

• 0001_p.json gordon is going to create a s3 bucket where the code of your lambdas will be uploaded.

• 0002_pr_r.json gordon will upload the code of your lambdas to S3.

• 0003_r.json gordon will create your lambdas.

But, should I care? No you should not really care much at this moment about what is going on. The only important
part is that you’ll now see a new _build directory in your project path. That directory contains everything gordon
needs to put your lambdas live.

If you want to read more about the internals of gordon project, you read more in the Project page.

Deploy your project

Deploying a project is a as easy as using the apply command:

$ gordon apply

Note: It is important that you make your AWS credential available in your terminal before, so gordon can use them.
For more information: Setup AWS Credentials

This command will have an output similar to:

$ gordon apply
Applying project...
0001_p.json (cloudformation)

CREATE_COMPLETE waiting... -
0002_pr_r.json (custom)

X code/contrib_lambdas_version.zip (c3137e97)
X code/firstapp_helloworld.zip (c7ec05a8)

0003_r.json (cloudformation)
CREATE_COMPLETE

Your lambdas are ready to be used! Navigate to AWS: Lambdas to test them.

What next?

You should have a basic understanding of how Gordon works. We recommend you to dig a bit deeper and explore:

• Project Details about how you can customize your projects

• Lambdas In-depth explanation of how lambdas work.

1.2. Quickstart 11

https://console.aws.amazon.com/lambda/home


Gordon Documentation, Release 0.7.0

• Event Sources List of all resources and integrations you can create using Gordon.

12 Chapter 1. First Steps



CHAPTER 2

Documentation

2.1 Project

Projects are the root container which contain all other resources. Projects are composed of:

• apps

• settings

Once you start using gordon, you’ll realize it makes sense to have several projects, and not only one monolitic one
with dozens of applications.

This is not news to you if you have heard about microservices, but it is good to emphasize that massive projects might
not a good idea (generally speaking).

As always, give it a shoot and decide what is better for you.

2.1.1 How can I create a new project?

Creating a new project is easy, you only need to run the following command:

13



Gordon Documentation, Release 0.7.0

$ gordon startproject demo

This will create a new directory called demo which will contain the most basic project. That’s a single settings.
yml file:

demo
- settings.yml

2.1.2 Project Actions

Once you have created your project, there are two main actions that you’ll run from the command line; build and
apply.

build

Build is the action that will collect all registered resources in your project, and create several templates in the _build
directory which will represent everything you have defined. As well as creating these templates, gordon will create all
necessary artifacts that it’ll later upload to s3.

At this point, gordon will not use any AWS credentials. This is important.

What gordon generates in the build directory is merely declarative and completely agnostic of in which region or stage
you’ll (later) deploy it. Gordon doesn’t know/care what is the current status (if any) of all those resources.

This is one of the greatness (and technical challenges) of gordon.

The number of required templates depend on you project, but these are all possible templates gordon will create:

Acronym Name Description
pr_p.
json

Pre Project Custom template - This is not generally used

p.json Project CloudFormation template - Gordon will create a S3 bucket where it’ll upload your
lambdas

pr_r.
json

Pre
Resources

Custom template - Gordon will generally upload your lambdas to S3.

r.json Resources CloudFormation template - Gordon will create your lambdas and event sources
ps_r.
json

Post
Resources

Custom template - This is not generally used

apply

Apply is the action that will deploy your project to one specific region and stage.

Term Description
regionAWS cloud is divided in several regions. Each Region is a separate geographic area. AWS Regions and

Availability Zones
stage Stages are 100% isolated deployments of the same project. The idea is that the same project can be

deployed in the same AWS account in different stages (dev, staging, prod...) in order to SAFELY
test it’s behaviour. Stage names must only contain up to 16 lowercase alphanumeric characters including
hyphen.

This command will:

• Collect all required parameters for this stage.

14 Chapter 2. Documentation

http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/using-regions-availability-zones.html
http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/using-regions-availability-zones.html


Gordon Documentation, Release 0.7.0

• Sequentially apply all gordon templates.

This command (for obvious reasons), will use your AWS credentials to apply your project templates.

delete

Removes all deployed project resources of one specific region and stage.

This is a destructive action, so gordon will by default do a dry-run and output all resources which would be deleted.

If you are ok with those resources being deleted, you can run the same command but adding the argument --confirm
in order to confirm your desire of gordon deleting all of them.

2.1.3 Anatomy of the project

---
project: { STRING }
default-region: { AWS_REGION }
code-bucket: { STRING }
apps:

- { STRING }
vpc: { MAP }
contexts: { MAP }

2.1.4 Lambda Properties

Project Name

Name project
Required Yes
Valid types string
Description Name for your Project

default-region

Name default-region
Required Yes
Valid types string
Description Default region where the project will be deployed

code-bucket

Name code-bucket
Required Yes
Valid
types

string

Validation Up to 31 lowercase alphanumeric characters including hyphen.
Descrip-
tion

Base Name of the bucket gordon will use to store the source code of your lambdas and
Cloudformation templates.

2.1. Project 15



Gordon Documentation, Release 0.7.0

Because the source code and the lambdas needs to be in the same region, gordon will create on bucket per region and
stage following the following format:

$CODE_BUCKET-$REGION-$STAGE.

apps

Name apps
Required Yes
Valid types list
Description List of installed apps

By default when you create a project, gordon will include some applications which you’ll probably need. Those
applications are called gordon.contrib applications and provide you (and your gordon project) with some basic func-
tionalities that you (or gordon) might need.

vpc

Name vpc
Required No
Valid types map
Description Map of vpc names with their respective security-groups and subnet-ids.

For more information Lambdas vpc setting.

Example:

---
project: vpcexample
...

vpcs:
my-vpc:

security-groups:
- sg-00000000

subnet-ids:
- subnet-1234567a
- subnet-1234567b
- subnet-1234567c

You can customize both security-groups and subnet-ids using parameters

---
project: vpcexample
...

vpcs:
my-vpc:

security-groups: ref://VpcSecurityGroups
subnet-ids: ref://VpcSubnets

16 Chapter 2. Documentation



Gordon Documentation, Release 0.7.0

contexts

Name contexts
Required No
Valid types map
Description Map of context names with their definitions.

For more information Contexts.

Example:

---
project: example
...

contexts:
default:
database_host: 10.0.0.1
database_username: dev-bob
database_password: shrug

2.2 Lambdas

Gordon has two aims:

• Easily deploy and manage lambdas.

• Easily connect those lambdas to other AWS services (kinesis, dynamo, s3, etc...)

Lambdas are simple functions written in any of the supported AWS languages (python, javascript and java). If you
want to know more, you can read AWS documentation in the topic:

• What Is AWS Lambda?

• AWS Lambda FAQs

• AWS Lambda Limits

Working with lambdas is quite easy to start with, but once you want to develop some complex integrations, it becomes
a bit of a burden to deal with all the required steps to put some changes live. Gordon tries to make the entire process
as smooth as possible.

In gordon, Lambdas are resources that you’ll group and define within apps. The idea is to keep Lambdas with the
same business domain close to each other in the same app.

2.2. Lambdas 17

http://docs.aws.amazon.com/lambda/latest/dg/welcome.html
https://aws.amazon.com/lambda/faqs/
http://docs.aws.amazon.com/lambda/latest/dg/limits.html


Gordon Documentation, Release 0.7.0

Before we continue, there is a bit of terminology we need to make clear:

Term Description
lambda Is a static working piece of code ready to be run on AWS.
lambda version Static point-in-time representation of a working lambda.
lambda alias Pointer to a lambda.
code bucket S3 bucket where your lambda code is uploaded.
code S3 Object which contains your lambda code and all required libraries/packages (zip)
code version S3 Object Version of one of your lambda code.
runtime Language in which the lambda code is written (python, javascript or java)

2.2.1 What gordon will do for you?

• Download any external requirements your lambdas might have.

• Create a zip file with your lambda, packages and libraries.

• Upload this file to S3.

• Create a lambda with your code and settings (memory, timeout...)

• Publish a new version of the lambda.

• Create an alias named current pointing to this new version.

• Create a new IAM Role for this lambda and attach it.

As result, your lambda will be ready to run on AWS!

As you can imagine, this is quite a lot of things to do every time you want to simply deploy a new change! That’s
where gordon tries to help.

With simply two commands, build and apply you’ll be able to deploy your changes again and again with no effort.

2.2.2 Why the current alias is important?

The current alias gordon creates pointing to your most recent lambda is really important. When gordon creates a
new event sources (like S3, Dynamo or Kinesis), it’ll make those call the lambda aliased as current instead of the
$LATEST.

This is really important to know, because it enables you to (in case of neccesary) change your current alias to point
to any previous version of the same lambda without needing to re-configure all related event sources.

Any subsequent deploy to the same stage will point the current alias to your latest function.

For more information you can read AWS Lambda Function Versioning and Aliases.

2.2.3 Anatomy of a Lambda

The following is the anatomy of a lambda in gordon.

lambdas:

{ LAMBDA_NAME }:
code: { PATH }
handler: { STRING }

18 Chapter 2. Documentation

http://docs.aws.amazon.com/lambda/latest/dg/versioning-aliases.html


Gordon Documentation, Release 0.7.0

memory: { NUMBER }
timeout: { NUMBER }
runtime: { RUNTIME_NAME }
description: { STRING }
build: { STRING }
role: { MAP }
vpc: { STRING }
context: { CONTEXT_NAME }
context-destination: { PATH }
auto-vpc-policy: { BOOLEAN }
auto-run-policy: { BOOLEAN }
cli-output: { BOOLEAN }
environment:

{ MAP }
policies:

{ POLICY_NAME }:
{ MAP }

...

The best way to organize your lambdas is to register them inside the settings.yml file of your apps within your
Project.

2.2.4 Lambda Properties

Lambda Name

Name Key of the lambdas map.
Required Yes
Valid types string
Max length 30
Description Name for your lambda. Try to keep it as short and descriptive as possible.

code

Name code
Required Yes
Valid types string
Max length 30
Description Path where the code of your lambda is

When creating lambdas you can:

• Put all the code of your lambda in the same file and make code point to it:

– code: code.py

– code: example.js

• Put your code in several files within a folder and make code point to this directory:

– code: myfolder

– Remember: When you point code to a directory you need to remember to specify the runtime
property of your lambda as gordon can’t infer it from the filename.

Simple python lambda:

2.2. Lambdas 19



Gordon Documentation, Release 0.7.0

lambdas:
hello_world:
code: functions.py

Folder javascript lambda:

lambdas:
hello_world:
code: myfolder
handler: file.handler
runtime: nodejs6.10

Java lambda:

lambdas:
hello_world:
code: myfolder
handler: example.Hello::handler
runtime: java8

handler

Name handler
Required No
Default handler
Valid types string, reference
Max length 30
Description Name of the function within code which will be the entry point of you lambda.

lambdas:
hello_world:
code: functions.py
handler: my_handler

For lambdas using the java runtime, this handler will need to have the following format (package.
class::method):

lambdas:
hello_world:
code: helloworld
runtime: java8
handler: helloworld.Hello::handler

Note: For more information about Java handlers Java Programming Model Handler Types

20 Chapter 2. Documentation

http://docs.aws.amazon.com/lambda/latest/dg/java-programming-model-handler-types.html


Gordon Documentation, Release 0.7.0

memory

Name memory
Required No
Default 128
Valid types integer, reference
Max 1536
Min 128
Description Amount of memory your lambda will get provisioned with

lambdas:
hello_world:
code: functions.py
memory: 1536

timeout

Name timeout
Required No
Default 3
Valid types integer, reference
Max 300
Min 1
Description The function execution time (in seconds) after which Lambda terminates the function

Because the execution time affects cost, set this value based on the function’s expected execution time.

lambdas:
hello_world:
code: functions.py
timeout: 300

runtime

Name runtime
Required Depends
Valid types runtime
Description Runtime of your lambda

Valid runtimes:

Runtime AWS Runtime
node, nodejs, node0.10 and nodejs0.10 nodejs
node4.3 and nodejs4.3 nodejs4.3
node6.10` nodejs6.10
python and python2.7 python2.7
java and java8 java8

If you don’t specify any runtime, Gordon tries to auto detect it based on the extensions of the code file.

Extension AWS Runtime
.js nodejs6.10
.py python2.7

For folder based lambdas the code property is a directory and not a file, so the runtime can’t be inferred.

2.2. Lambdas 21



Gordon Documentation, Release 0.7.0

For these situations, you can manually specify the runtime using this setting:

lambdas:
hello_world:
code: hellojava
runtime: java8

description

Name description
Required No
Default Empty
Valid types string, reference
Description Human-readable description for your lambda.

lambdas:
hello_world:
code: functions.py
description: This is a really simple function which says hello

build

Name build
Required No
Valid types string, list
Description Build process for collecting resources of your lambda

This property defines which are the commands gordon needs to run in order to collect all the resources from your
lambda and copying them to an empty target directory. Once the collection command finishes, gordon will create a
zip file with the content of that folder.

This property has one default implementation per available runtime (Java, Javascript, Python), which covers most of
the simple use cases, but there are certain use situations where you might need further fine control.

These are the default implementations gordon will use if you leave this property blank:

Python

build:
- cp -Rf * {target}
- echo "[install]\nprefix=" > {target}/setup.cfg
- {pip_path} install -r requirements.txt -q -t {target} {pip_install_extra}
- cd {target} && find . -name "*.pyc" -delete

Node

build:
- cp -Rf * {target}
- cd {target} && {npm_path} install {npm_install_extra}

Java

build: {gradle_path} build -Ptarget={target} {gradle_build_extra}

As you can see, the value of build can be either a string or a list of strings. Gordon will process them sequentially
within your lambda directory.

22 Chapter 2. Documentation



Gordon Documentation, Release 0.7.0

There are certain variables you can use to customize this build property.

Variable Description
target Destination folder where you need to put the code of your lambda
pip_path pip path. You can customize this using the pip-path setting in your settings
npm_path npm path. You can customize this using the npm-path setting in your settings
gradle_path gradle path. You can customize this using the gradle-path setting in your

settings
pip_install_extra Extra arguments you can define using pip-install-extra in your settings
npm_install_extra Extra arguments you can define using npm-install-extra in your settings
gradle_build_extra Extra arguments you can define as part of gradle-build-extra in your settings
project_path Root directory of your project
project_name Name of your project
lambda_name Name of your lambda

This is the minimal version of what a build command that copies your lambda directory would look like:

lambdas:
hello_world:
code: mycode
runtime: python
handler: code.handler
build: cp -Rf * {target}

You can use this build property in conjunction with some more powerful build tools such as Makefile, npm,
gulp, grunt or simple bash files.

In this example, we make babel process our javascript files, and leave them in TARGET.

lambdas:
hello_world:
code: mycode
runtime: node
handler: code.handler
build: TARGET={target} npm run build

{
"babel": {
"presets": [
"es2015"

]
},
"devDependencies": {
"babel-cli": "^6.8.0",
"babel-preset-es2015": "^6.6.0"

},
"scripts": {

"build": "babel *.js --out-dir $TARGET"
}

}

2.2. Lambdas 23



Gordon Documentation, Release 0.7.0

role

Name role
Required No
default Gordon will create a minimal role for this function
Valid types arn, reference
Description ARN of the lambda role this function will use.

If not provided, gordon will create one role for this function and include all necessary policies (This is the default
and most likely behaviour you want).

lambdas:
hello_world:
code: functions.py
role: arn:aws:iam::account-id:role/role-name

vpc

Name vpc
Required No
Valid types vpc-name
Description Name of the vpc where this lambda should be deployed.

If the Lambda function requires access to resources in a VPC, specify a VPC configuration that Lambda uses to set up
an elastic network interface (ENI). The ENI enables your function to connect to other resources in your VPC, but it
doesn’t provide public Internet access.

If your function requires Internet access (for example, to access AWS services that don’t have VPC endpoints), config-
ure a Network Address Translation (NAT) instance inside your VPC or use an Amazon Virtual Private Cloud (Amazon
VPC) NAT gateway. For more information, see NAT Gateways in the Amazon VPC User Guide.

lambdas:
hello_world:
code: functions.py
vpc: my-vpc

You need to define some properties about your vpc (in this example my-vpc) in the project settings.

---
project: vpcexample
...

vpcs:
my-vpc:

security-groups:
- sg-00000000

subnet-ids:
- subnet-1234567a
- subnet-1234567b
- subnet-1234567c

If auto-vpc-policy is True, gordon will attach to your lambda role the required policy which would allow it to
access the vpc. If it is False, you’ll need to do this by yourself.

24 Chapter 2. Documentation

http://docs.aws.amazon.com/AmazonVPC/latest/UserGuide/vpc-nat-gateway.html


Gordon Documentation, Release 0.7.0

context

Name context
Required No
default default
Valid types context-name
Description Name of the context you want to inject into this lambda.

For more information about contexts you can read about them in Contexts.

lambdas:
hello_world:
code: functions.py
context: context_name

context-destination

Name context-destination
Required No
default .context
Valid types string
Description Path where gordon should put the context json file.

For more information about contexts you can read about them in Contexts.

lambdas:
hello_world:
code: functions.py
context-destination: my-customize-context-file.json

cli-output

Name cli-output
Required No
Default True
Valid types boolean
Description Output the lambda ARN as part of the apply output

environment

Name environment
Required No
Valid types map
Description Map of environment variables to attach to this lambda.

policies

Name policies
Required No
Valid types map
Description Map of AWS policies to attach to the role of this lambda.

2.2. Lambdas 25



Gordon Documentation, Release 0.7.0

This is the way you’ll give permissions to you lambda to connect to other AWS services such as dynamodb, kinesis,
s3, etc... For more inforamtion AWS IAM Policy Reference

In the following example we attach one policy called example_bucket_policy to our lambda hello_world
in order to make it possible to read and write a S3 bucket called EXAMPLE-BUCKET-NAME.

lambdas:
hello_world:
code: functions.py
policies:

example_bucket_policy:
Version: "2012-10-17"
Statement:
-

Action:
- "s3:ListBucket"
- "s3:GetBucketLocation"

Resource: "arn:aws:s3:::EXAMPLE-BUCKET-NAME"
Effect: "Allow"

-
Action:
- "s3:PutObject"
- "s3:GetObject"
- "s3:DeleteObject"
- "dynamodb:GetRecords"

Resource: "arn:aws:s3:::EXAMPLE-BUCKET-NAME/*"
Effect: "Allow"

auto-vpc-policy

Name auto-vpc-policy
Required No
Default True
Valid types boolean
Description Automatically attach to your lambda enough permissions to get a vpc configured.

If auto-vpc-policy is True, and you lambda has one vpc configured, gordon will attach to your lambda role
the required policy which would allow it to access the vpc. If it is False, you’ll need to do this by yourself.

{
"Version": "2012-10-17",
"Statement": [

{
"Effect": "Allow",
"Action": [

"ec2:CreateNetworkInterface"
],
"Resource": [

"*"
]

}
]

}

26 Chapter 2. Documentation

http://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies.html


Gordon Documentation, Release 0.7.0

auto-run-policy

Name auto-run-policy
Required No
Default True
Valid types boolean
Descrip-
tion

Automatically attach to your lambda enough permissions to let it run and push logs to CloudWatch
Logs.

If auto-run-policy is True, gordon will attach to your lambda role the required policy which would allow it to
run and push logs.

{
"Version": "2012-10-17",
"Statement": [

{
"Effect": "Allow",
"Action": [

"lambda:InvokeFunction"
],
"Resource": [

"*"
]

},
{

"Effect": "Allow",
"Action": [

"logs:CreateLogGroup",
"logs:CreateLogStream",
"logs:PutLogEvents"

],
"Resource": "arn:aws:logs:*:*:*",

}
]

}

2.3 Lambda Requirements

When in Rome do as the Romans

We believe developers of lambdas should feel like in home while writing them in their languages. We are not going to
come up with a package manager for javascript or a build tool for java better than the existing ones.

For that reason we try to respect as much as possible each runtime de facto package managers / build tools.

That is the reason why the default build implementation for each kind of runtime uses pip, npm and graddle. If
you want to know more about the build property of lambdas you can read Lambda: build.

Note: For using this functionality, you’ll need to make the code path for you lambda be a directory. For more
information you can read the code section in Lambdas.

2.3. Lambda Requirements 27



Gordon Documentation, Release 0.7.0

2.3.1 Python requirements

If your python lambda requires some python packages, you can create a requirements.txt file in the root of
your lambda folder, and gordon will install all those using pip.

For more information about the format of this file:

• https://pip.readthedocs.io/en/1.1/requirements.html

Additionally you can customize how gordon invoques pip using the following settings:

Setting Description
pip-path Path to you pip binary Default: pip
pip-install-extra Extra arguments you want gordon to use while invoking pip install.

Example requirements.txt:

requests>=2.0
cfn-response

2.3.2 Javascript requirements

If your javascript lambda requires some extra modules, you can create a package.json file in the root of your
lambda folder, and gordon will invoke npm install for you.

For more information:

• https://docs.npmjs.com/files/package.json

• https://docs.npmjs.com/cli/install

Additionally you can customize how gordon invoques npm using the following settings:

Setting Description
npm-path Path to you npm binary Default: npm
npm-install-extra Extra arguments you want gordon to use while invoking npm install.

Example package.json:

{
"dependencies": {
"path": "0.11.14"

}
}

2.3.3 Java requirements

If your Java lambda requires some extra packages, you can customize how your Java lambda is built editing your
dependency section in your build.gradle file.

For more information:

• https://docs.gradle.org/current/userguide/dependency_management.html

The only requirement gordon enforces to this build.gradle file is that the build target leaves whatever you want
to get bundled into your lambda in the dest folder. You can make this build process as complex as you want/need.

Additionally you can customize how gordon invoques gradle using the following settings:

28 Chapter 2. Documentation

https://pip.readthedocs.io/en/1.1/requirements.html
https://docs.npmjs.com/files/package.json
https://docs.npmjs.com/cli/install
https://docs.gradle.org/current/userguide/dependency_management.html


Gordon Documentation, Release 0.7.0

Setting Description
gradle-path Path to you gradle binary Default: gradle
gradle-build-extra Extra arguments you want gordon to use while invoking gradle build.

Example build.grandle:

apply plugin: 'java'

repositories {
mavenCentral()

}

dependencies {
compile (

'com.amazonaws:aws-lambda-java-core:1.1.0',
'com.amazonaws:aws-lambda-java-events:1.1.0'

)
}

task buildLambda(type: Copy) {
from compileJava
from processResources
into('lib') {

from configurations.runtime
}
into target

}

build.dependsOn buildLambda

2.4 Event Sources

Apart from creating lambdas, gordon can help you wiring your lambdas with lot’s of different AWS services. Amazon
calls this Event Sources.

2.4.1 Apigateway

Amazon API Gateway is a fully managed service that makes it easy for developers to create APIs at any scale.

Gordon allow you to create and integrate your Lambdas with apigateway resources in order to easily create HTTP
APIs.

2.4. Event Sources 29



Gordon Documentation, Release 0.7.0

It might be interesting for you to give it a look to AWS: Amazon API Gateway Concepts before continuing.

Anatomy of the integration

apigateway:

{ API_NAME }:
description: { STRING }
cli-output: { BOOLEAN }
resources:

{ URL }:
methods: { LIST }
api_key_required: { BOOL }
authorization_type: { STRING }
responses: { LIST }
parameters: { MAP }
request_templates: { MAP }
integration:

type: { STRING }
lambda: { LAMBDA_NAME }
http_method: { STRING }
responses: { LIST }
parameters: { MAP }

Properties

Api Name

Name Key of the apigateway map.
Required Yes
Valid types string
Max length 30
Description Name for your apigateway.

Description

Name description
Required No
Default Empty
Valid types string, reference
Max length 30
Description Description of your api

cli-output

Name cli-output
Required No
Default True
Valid types boolean
Description Output the deployment base URL as part of the apply output

30 Chapter 2. Documentation

http://docs.aws.amazon.com/apigateway/latest/developerguide/api-gateway-basic-concept.html


Gordon Documentation, Release 0.7.0

Resources

Name resources
Required Yes
Valid types map
Description Resources of your API Gateway

Example:

apigateway:
firstapi:

description: My Inventory
resources:

/:
methods: GET
lambda: helloworld.index

/contact/email:
methods: POST
lambda: helloworld.contact

In this example, we have defined one API called firstapi with two resources: / and /contact/email:

• Each of these urls will call two different lambdas helloworld.index and helloworld.contact re-
spectively.

• The first url / will only allow GET requests, and the second one /contact/email will only allow POST
requests.

Resource URL

Name Key of the resources map.
Required Yes
Valid types string
Description Full path (url) of your resource

URLs are the key of the resources map. For each resource. You need to define the full path including the leading /.

If you want to make certain urls have parameters, you can do so using apigatweway syntax.

apigateway:
myshop:

description: My Inventory API
resources:

/:
methods: GET
lambda: inventory.index

/article/{article_id}:
methods: POST
lambda: inventory.article

Your lambda called shop.article will receive one parameter called article_id.

2.4. Event Sources 31



Gordon Documentation, Release 0.7.0

Resource Methods

Name methods
Required Yes
Valid types list, string, map
Description List of valid methods for your resource

Example:

apigateway:
example:

description: My Api example
resources:

/:
methods: GET
lambda: inventory.index

/get_and_post:
methods: [GET, POST]
lambda: inventory.article

/get_post_and_delete:
methods:

- GET
- POST
- DELETE

lambda: inventory.article

Note: As shortcut, if methods value is a string instead of a list gordon will assume you only want one method.

Resource Methods (advanced)

The simplified version of methods is only a shortcut in order to make gordon’s API nicer 95% of the time.

That version (the simplified one) should be more than enough for most of the cases, but if for some reason you want
to be able to configure different integrations for each of the methods of an url, you’ll need to make methods a map
of http methods to integrations.

apigateway:
exampleapi:

description: My not-that-simple example
resources:

/:
methods:
GET:
integration:
lambda: app.index_on_get

POST:
integration:
lambda: app.index_on_post

Note: If you use this approach, you would need to define ALL resource settings at the level of each method in your
resource.

32 Chapter 2. Documentation



Gordon Documentation, Release 0.7.0

Resource authorization type

Name api_key_required
Required No
Default False
Valid Types Boolean
Description Indicates whether the method requires clients to submit a valid API key.

Name authorization_type
Required No
Default NONE
Valid Values NONE
Description Authorization type (if any) for your resource.

Resource Responses

Name responses
Required No
Valid Types Response
Description Responses that can be sent to the client who calls this resource.

Example:

apigateway:
helloapi:

resources:
/hello:

method: GET
integration:

lambda: helloworld.sayhi
responses:

- pattern: ""
code: "404"

responses:
- code: "404"

Resource Parameters

Name parameters
Re-
quired

No

Default Empty
Valid
Values

MAP

De-
scrip-
tion

Request parameters that API Gateway accepts. Specify request parameters as key-value pairs
(string-to-Boolean maps), with a source as the key and a Boolean as the value. The Boolean specifies
whether a parameter is required. A source must match the following format
method.request.$location.$name, where the $location is querystring, path, or
header, and $name is a valid, unique parameter name.

2.4. Event Sources 33



Gordon Documentation, Release 0.7.0

Resource Request Templates

Name request_templates
Re-
quired

No

Valid
Values

map

De-
scrip-
tion

A map of Apache Velocity templates that are applied on the request payload. The template that API
Gateway uses is based on the value of the Content-Type header sent by the client. The content type
value is the key, and the template is the value (specified as a string). For more information: http://docs.
aws.amazon.com/apigateway/latest/developerguide/api-gateway-mapping-template-reference.html

Resource Integration

Name integration
Required No
Valid Values map
Description Integration for the current Resource

Integration Type

Name type
Required No
Default AWS
Valid Values AWS, AWS_PROXY, MOCK, HTTP
Description Type of the integration

Integration Lambda

Name lambda
Required Depends
Valid Values app.lambda-name
Description Name of the lambda you want to configure for this resource.

34 Chapter 2. Documentation

http://docs.aws.amazon.com/apigateway/latest/developerguide/api-gateway-mapping-template-reference.html
http://docs.aws.amazon.com/apigateway/latest/developerguide/api-gateway-mapping-template-reference.html


Gordon Documentation, Release 0.7.0

Integration Parameters

Name parameters
Re-
quired

No

Default Empty
Valid
Values

MAP

De-
scrip-
tion

The request parameters that API Gateway sends with the back-end request. Specify request parameters
as key-value pairs (string-to-string maps), with a destination as the key and a source as the value.
Specify the destination using the following pattern
integration.request.$location.$name, where $location is querystring, path,
or header, and name is a valid, unique parameter name. The source must be an existing method
request parameter or a static value. Static values must be enclosed in single quotation marks and
pre-encoded based on their destination in the request.

Integration HTTP Method

Name http_method
Required Depends
Valid Values string
Description Http method the ApiGateway will use to contact the integration

Integration Responses

Name responses
Re-
quired

No

Valid
Values

list

De-
scrip-
tion

The response that API Gateway provides after a method’s back end completes processing a request.
API Gateway intercepts the integration’s response so that you can control how API Gateway surfaces
back-end responses. Each response item can conatain the following keys: pattern: a regular
expression that specifies which error strings or status codes from the back end map to the integration
response; code: the status code that API Gateway uses to map the integration response to a
MethodResponse status code; template: the templates used to transform the integration response
body; parameters: the response parameters from the back-end response that API Gateway sends to
the method response. Parameters can be used to set outbound CORS headers:
method.response.header.Access-Control-Allow-Origin: "'*'" or to map
custom dynamic headers: method.response.header.Custom:
"integration.response.body.customValue"

Example:

apigateway:
helloapi:
resources:

/hello:
method: GET
integration:
lambda: helloworld.sayhi
responses:

2.4. Event Sources 35



Gordon Documentation, Release 0.7.0

- pattern: ""
code: "404"
template:
application/json: |
#set($inputRoot = $input.path('$'))
$inputRoot

Full Example

apigateway:

helloapi:

description: My complex hello API
resources:

/:
methods: GET
integration:

lambda: helloworld.sayhi
/hi:

methods: [GET, POST]
integration:

lambda: helloworld.sayhi

/hi/with-errors:
method: GET
integration:

lambda: helloworld.sayhi
responses:

- pattern: ""
code: "404"

responses:
- code: "404"

/hi/none:
method: GET

/hi/http:
methods: GET
integration:

type: HTTP
uri: https://www.google.com

/hi/mock:
methods: GET
integration:

type: MOCK

/{integration+}:
methods: POST
integration:

lambda: helloworld.sayho
type: AWS_PROXY

/parameters:
methods: GET

36 Chapter 2. Documentation



Gordon Documentation, Release 0.7.0

parameters:
method.request.header.color: True

integration:
lambda: helloworld.hellopy
responses:

- pattern: ""
code: "200"

parameters:
integration.request.querystring.color: method.request.header.

→˓color
responses:

- code: "200"
parameters:

method.response.header.color: color

/cors:
methods: GET
integration:

lambda: helloworld.hellopy
responses:

- pattern: ""
code: "200"
parameters:

method.response.header.Access-Control-Allow-Origin: "'*'
→˓"

method.response.header.Access-Control-Allow-Methods: "'*
→˓'"

method.response.header.Access-Control-Request-Method: "
→˓'GET'"

responses:
- code: "200"
parameters:

method.response.header.Access-Control-Allow-Origin: true
method.response.header.Access-Control-Allow-Methods: true
method.response.header.Access-Control-Request-Method: true

/hi/complex/:
methods:

GET:
integration:

lambda: helloworld.sayhi
POST:

integration:
lambda: helloworld.sayhi

/content-types:
methods: POST
integration:

lambda: helloworld.sayhi
responses:

- pattern: ""
code: "200"
template:

application/json: |
#set($inputRoot = $input.path('$'))
$inputRoot

request_templates:

2.4. Event Sources 37



Gordon Documentation, Release 0.7.0

application/x-www-form-urlencoded: |
#set($inputRoot = $input.path('$'))
{}

responses:
- code: "200"
models:

application/xml: Empty

2.4.2 Dynamodb

Amazon DynamoDB is a fully managed NoSQL database service that provides fast and predictable performance with
seamless scalability.

Gordon allow you to integrate your lambdas with dynamodb using their streams service. DynamoDB Streams captures
a time-ordered sequence of item-level modifications in any DynamoDB table, and stores this information in a log for
up to 24 hours. Applications can access this log and view the data items as they appeared before and after they were
modified, in near real time.

Every time one of our dynamodb tables get’s modified, dynamo notifies the stream, and one of our lambdas is executed.

Note: As always, is not gordon’s business to create the source stream. You should create them in advance. You can
read Why in the FAQ

Anatomy of the integration

dynamodb:

{ INTEGRATION_NAME }:
lambda: { LAMBDA_NAME }
stream: { ARN }
batch_size: { INT }
starting_position: { STARTING_POSITION }

Properties

Integration Name

Name Key of the dynamodb map.
Required Yes
Valid types string
Max length 30
Description Name for your dynamodb integration. Try to keep it as short and descriptive as possible.

Lambda

Name lambda
Required Yes
Valid types lambda-name
Description Name of the lambda you want to notify

38 Chapter 2. Documentation



Gordon Documentation, Release 0.7.0

Stream

Name stream
Required Yes
Valid types arn
Description Arn of the dynamodb stream you want to connect your lambda with.

Batch size

Name stream
Required No
Default 100
Valid types integer
Min 1
Max 10000
Description Number of events you want your lambda to receive at once

Starting position

Name starting_position
Required Yes
Valid Values TRIM_HORIZON, LATEST
Description Number of events you want your lambda to receive at once

• TRIM_HORIZON: Start reading at the last (untrimmed) stream record, which is the oldest record in the shard.
In DynamoDB Streams, there is a 24 hour limit on data retention. Stream records whose age exceeds this limit
are subject to removal (trimming) from the stream.

• LATEST: Start reading just after the most recent stream record in the shard, so that you always read the most
recent data in the shard.

Full Example

dynamodb:

my_dynamodb_integration:

lambda: app.dynamoconsumer
stream: arn:aws:dynamodb:eu-west-1:123456789:table/dynamodbexample/stream/2015-11-

→˓14T11:18:58.642
batch_size: 100
starting_position: LATEST

2.4.3 Events

Amazon CloudWatch Events delivers a near real-time stream of system events that describe changes in Amazon Web
Services (AWS) resources to AWS Lambda functions as well as trigger events on a pre-determined schedule .

Using simple rules that you can quickly set up, you can match events and route them to one or more target functions.

2.4. Event Sources 39



Gordon Documentation, Release 0.7.0

A full list of available events can be found here: http://docs.aws.amazon.com/AmazonCloudWatch/latest/
DeveloperGuide/EventTypes.html

Anatomy of the integration

events:

{ INTEGRATION_NAME }:
state: { STATE }
description: { STRING }
schedule_expression: { RATE }
event_pattern: { MAP }
targets:

{ TARGET_ID }:
lambda: { LAMBDA_NAME }
input: { INPUT }
input_path: { INPUT_PATH }

Note: You need to specify either schedule_expression, event_pattern or both.

Properties

Integration Name

Name Key of the events map.
Required Yes
Valid types string
Max length 30
Description Name for your CLoudWatch integration.

State

Name state
Required No
Valid Values ENABLED, DISABLED
Description Enables or disables this integration

Schedule Expression

Name schedule_expression
Required No
Valid Types rate
Description Rate at which your lambda will be scheduled

All scheduled events use UTC time zone and the minimum precision for schedules is 1 minute. CloudWatch Events
rates supports the following formats:

• cron(<Fields>)

• rate(<Value> <Unit>)

40 Chapter 2. Documentation

http://docs.aws.amazon.com/AmazonCloudWatch/latest/DeveloperGuide/EventTypes.html
http://docs.aws.amazon.com/AmazonCloudWatch/latest/DeveloperGuide/EventTypes.html


Gordon Documentation, Release 0.7.0

For more information about cron and rate: http://docs.aws.amazon.com/AmazonCloudWatch/latest/
DeveloperGuide/ScheduledEvents.html

Examples:

• cron(0 10 * * ? *) Run at 10:00 am (UTC) every day.

• cron(0 18 ? * MON-FRI *) Run at 06:00 pm (UTC) every Monday through Friday.

• cron(0/15 * * * ? *) Run every 15 minutes.

• rate(5 minutes) Every 5 minutes.

• rate(1 hour) Every 1 hour.

• rate(2 day) Every 2 day.

Event pattern

Name event_pattern
Required No
Valid Types map
Description Pattern structure which matches certain CloudWatch events you are interested in.

Rules use event patterns to select events and route them to targets. A pattern either matches an event or it doesn’t.
Event patterns are represented as objects with a structure that is similar to that of events.

event_pattern:
source:

- aws.ec2
detail:

state:
- pending

For more information about Events: http://docs.aws.amazon.com/AmazonCloudWatch/latest/DeveloperGuide/
CloudWatchEventsandEventPatterns.html

Targets

Name targets
Required No
Valid Types map
Description Map of target lambdas to connect this event to, as well as optional input and input_path

information.

targets:
say_hello:
lambda: helloworld.hellopy

say_hello:
lambda: helloworld.hellopy
input: xxx
input_path: yyy

2.4. Event Sources 41

http://docs.aws.amazon.com/AmazonCloudWatch/latest/DeveloperGuide/ScheduledEvents.html
http://docs.aws.amazon.com/AmazonCloudWatch/latest/DeveloperGuide/ScheduledEvents.html
http://docs.aws.amazon.com/AmazonCloudWatch/latest/DeveloperGuide/CloudWatchEventsandEventPatterns.html
http://docs.aws.amazon.com/AmazonCloudWatch/latest/DeveloperGuide/CloudWatchEventsandEventPatterns.html


Gordon Documentation, Release 0.7.0

Full Example

events:
every_night:
schedule_expression: cron(0 0 * * ? *)
description: Call example_lambda every midnight.
state: ENABLED

targets:
say_hello:

lambda: helloworld.hellopy # Example lambda

new_asg_instance:
description: Do something when an autoscaling-group instance-launch happens
state: ENABLED

targets:
say_hello:

lambda: helloworld.hellopy # Example lambda

event_pattern:
source:

- aws.autoscaling
detail:

LifecycleTransition:
- autoscaling:EC2_INSTANCE_LAUNCHING

2.4.4 Kinesis

Amazon Kinesis Streams enables you to build custom applications that process or analyze streaming data for special-
ized needs. Amazon Kinesis Streams can continuously capture and store terabytes of data per hour from hundreds of
thousands of sources such as website clickstreams, financial transactions, social media feeds, IT logs, and location-
tracking events. Kinesis Streams captures a time-ordered sequence of events, and stores this information in a log for
up to 7 days.

Gordon allow you to integrate your lambdas with kinesis using their streams service. Every time on event gets pub-
lished into the kinesis stream, one of our lambdas is executed.

Note: As always, is not gordon’s business to create the source stream. You should create them in advance. You can
read Why in the FAQ

Anatomy of the integration

kinesis:

{ INTEGRATION_NAME }:
lambda: { LAMBDA_NAME }
stream: { ARN }
batch_size: { INT }
starting_position: { STARTING_POSITION }

42 Chapter 2. Documentation



Gordon Documentation, Release 0.7.0

Properties

Integration Name

Name Key of the kinesis map.
Required Yes
Valid types string
Max length 30
Description Name for your kinesis integration. Try to keep it as short and descriptive as possible.

Lambda

Name lambda
Required Yes
Valid types lambda-name
Description Name of the lambda you want to notify

Stream

Name stream
Required Yes
Valid types arn
Description Arn of the kinesis stream you want to connect your lambda with.

Batch size

Name batch_size
Required No
Default 100
Valid types integer
Min 1
Max 10000
Description Number of events you want your lambda to receive at once

Starting position

Name starting_position
Required Yes
Valid Values TRIM_HORIZON, LATEST
Description Number of events you want your lambda to receive at once

• TRIM_HORIZON: Start reading at the last (untrimmed) stream record, which is the oldest record in the shard.

• LATEST: Start reading just after the most recent stream record in the shard, so that you always read the most
recent data in the shard.

2.4. Event Sources 43



Gordon Documentation, Release 0.7.0

Full Example

kinesis:

my_kinesis_integration:

lambda: app.kinesisconsumer
stream: arn:aws:kinesis:eu-west-1:123456789:stream/kinesisexample
batch_size: 100
starting_position: LATEST

2.4.5 S3

Amazon Simple Storage Service (Amazon S3), provides developers with secure, durable, highly-scalable object stor-
age. Amazon S3 is easy to use, with a simple web service interface to store and retrieve any amount of data from
anywhere on the web.

Gordon allow you to integrate your lambdas with S3 using their notification service. The idea is simple, every time an
object get’s created/deleted, S3, will trigger a notification which you can route to three different services:

• Lambda: Your code will be triggered each time something happens. (1 S3 event = 1 lambda
executed)

• SQS: S3 will create a message in a SQS queue every time something happens. Right now there is
no any api for Lambdas to consume messages from a sqs queue, but because you need to define all
bucket notification in the same place, we need to support this. In the future AWS will might support
consuming SQS messages using lambda. (1 S3 event = 1 message in a queue)

• SNS: S3 will send a message to a SNS Topic. You can subscribe as many lambdas as you want to
this topic and process those messages individually (1 S3 event = N lambdas executed)

Note: As always, is not gordon’s business to create those sqs or sns resources. You should create them
in advance. You can read Why in the FAQ

Limitations

This integration, has some limitations because how the AWS API is designed:

• You must define all notifications for a bucket within the same integration.

• Gordon will refuse to configure notifications in bucket if it already has some other notifications configured
manually (this is a safe measure).

Anatomy of the integration

s3:

{ INTEGRATION_NAME }:
bucket: { BUCKET_NAME }
notifications:

{ NOTFICATION_ID }:
lambda: { LAMBDA_NAME }

44 Chapter 2. Documentation



Gordon Documentation, Release 0.7.0

queue: { QUEUE_NAME }
topic: { TOPIC_NAME }
events:
- { EVENT_NAME }

key_filters:
prefix: { STRING }
suffix: { STRING }

Properties

Integration Name

Name Key of the s3 map.
Required Yes
Valid types string
Max length 30
Description Name for your s3 integration. Try to keep it as short and descriptive as possible.

Bucket

Name bucket
Required Yes
Valid types string, reference
Max length 30
Description Name of the bucket source of the events

Notifications

Name notifications
Required Yes
Valid types list
Description List of notifications to configure.

Notification ID

Name id
Required Yes
Valid types string
Description Unique identifier for this notification

Notification Lambda

Name lambda
Required No
Valid types lambda-name, arn
Description Name of the lambda you want to notify

2.4. Event Sources 45



Gordon Documentation, Release 0.7.0

Note: Each notification can only configure one lambda, queue or topic.

You can reference lambdas by name

lambda: app.s3consumer

Or by their full arn:

lambda: arn:aws:lambda:eu-west-1:123456789:function:function-name

Notification Queue

Name queue
Required No
Valid types queue-name, map
Description Name of the queue you want to notify

Note: Each notification can only configure one lambda, queue or topic.

You can reference queues by name if they are in the same account than the bucket

queue: my-queue-name

If your queue is on a different account you can use the dictionary format:

queue:
name: my-queue-name
acount_id: 123456789

Notification Topic

Name topic
Required No
Valid types topic-name, map
Description Name of the topic you want to notify

You can reference topics by name if they are in the same account than the bucket

topic: my-topic-name

If your topic is on a different account you can use the dictionary format:

topic:
name: my-topic-name
acount_id: 123456789

46 Chapter 2. Documentation



Gordon Documentation, Release 0.7.0

Notification Events

Name events
Required Yes
Valid types list
Description List of events you want to make trigger a notification

The list of available events is the following:

• s3:ObjectCreated:*

• s3:ObjectCreated:Put

• s3:ObjectCreated:Post

• s3:ObjectCreated:Copy

• s3:ObjectCreated:CompleteMultipartUpload

• s3:ObjectRemoved:*

• s3:ObjectRemoved:Delete

• s3:ObjectRemoved:DeleteMarkerCreated

• s3:ReducedRedundancyLostObject

Note: Remember that you can’t overlap events between notifications. So, if you for example subscribe a lambda to
s3:ObjectCreated:*, you’ll not be able to subscribe any other notification to: s3:ObjectCreated:Put,
s3:ObjectCreated:Post, etc...

Key Filters

Name key_filters
Required No
Valid types map
Description Map of filters you want to apply

Filters are optional to all notifications. The current AWS API only allows you to filter events by the key’s prefix
and suffix. One notification can’t define more than one of each (prefix and suffix) and filters in a bucket can’t
overlap one to each other.‘‘prefix‘‘ and suffix value and can be either a string or a references.

Full Example

s3:
my_s3_integration:
bucket: my_bucket_name
notifications:

lambda_on_create_cat:
lambda: app.s3consumer
events:
- s3:ObjectCreated:*

key_filters:
prefix: cat_
suffix: .png

2.4. Event Sources 47



Gordon Documentation, Release 0.7.0

queue_on_remove_dog:
queue: removed_dogs_queue
events:
- s3:ObjectRemoved:*

key_filters:
prefix: dog_

topic_on_redundacy_lost:
topic: redundacy_lost_topic
events:
- s3:ReducedRedundancyLostObject:*

2.5 Parameters

Parameters are the artifact around the fact that project templates (what gordon generates into _build) should be
immutable between stages. Parameters allow you to have specific settings based on the stage where you are applying
your project.

2.5.1 How can I use parameters?

In order to use parameters you only need to:

• Create a directory called parameters

• Inside of this directory, create .yml files for your different stages (dev.yml, prod.yml, ...)

• Replace values in your settings with ref://MyParameter

• Add values for MyParameter in dev.yml, prod.yml ...

...
parameters
- dev.yml
- prod.yml
- common.yml

Note: You can create a file called common.yml, and place all shared parameters between stages on it. When this
file is present, gordon will read it first, and then update the parameters map using your stage-specific settings file (if
pressent).

If you want to customize your parameters further, read Advanced Parameters, where you’ll find information on how
make paramater values be dynamic.

2.5.2 Example

Let’s imagine you want to call one lambda every time a file is created in one of your buckets.

• First, you’ll create and register a lambda.

• Then you’ll create a new event source.

Something like this:

48 Chapter 2. Documentation



Gordon Documentation, Release 0.7.0

s3:
my_s3_integration:
bucket: my-dev-bucket
notifications:

- id: lambda_on_create_cat
lambda: app.mys3consumer
events:
- s3:ObjectCreated:*

This is good to start with, but what about when you want to put this on production? You’ll need to:

• Change the bucket to my-production-bucket instead of my-dev-bucket

• Build your project gordon build

• Apply the project into production gordon apply --stage=prod

But... now every time you want to develop the lambda further in your dev stage, you’ll need to change the bucket...
again and again back and forth.

This is tedious and unmaintainable.

2.5.3 Solution

The solution is as simple as making your bucket name be a parameter. In this case we are calling the parameter
MyS3Bucket.

s3:
my_s3_integration:
bucket: ref://MyS3Bucket
notifications:

- id: lambda_on_create_cat
lambda: app.mys3consumer
events:
- s3:ObjectCreated:*

Then, in the root of you project, create a new directory called parameters and create a new file with the name of
each of the stages (dev and prod).

...
parameters/
- prod.yml
- dev.yml

Then, we can define two different values for MyS3Bucket based on the stage where we are applying the project.

prod.yml will have the production bucket:

---
MyS3Bucket: my-production-bucket

and dev.yml will have the dev one:

---
MyS3Bucket: my-dev-bucket

Now we can simply run:

2.5. Parameters 49



Gordon Documentation, Release 0.7.0

• gordon apply --stage=dev

• gordon apply --stage=prod

And the correct settings will be used.

2.5.4 How it works?

When you define in your settings file a value as a reference ref://, gordon will automatically register (on build
time) all required input parameters in your CloudFormation templates and collect values from your parameters files
when you call apply.

Remember that you can create a file called common.yml, and place all shared parameters between stages on it.

2.6 Contexts

Contexts in Gordon are groups of variables which you want to make accessible to your code, but you don’t want to
hardcode into it because it’s values are dependant on the the deployment.

This could be for example because dev and production lambdas (although beeing the same code), need to connect
to different resources, use different passwords or produce slightly different outputs.

In the same way, same lambdas deployed to different regions will probably need to connect to different places.

Contexts solve this problem by injecting a small payload into the lambdas package on deploy time, and letting you
read that file on run time using your language of choice.

2.6.1 How contexts works

The first thing you’ll need to do is define a context in your project settings file (project/settings.yml).

---
project: my-project
default-region: eu-west-1
code-bucket: my-bucket
apps:

...
contexts:

default:
database_host: 10.0.0.1
database_username: dev-bob
database_password: shrug

...

As you can see, we have defined a context called default. All lambdas by default inject the context called default
if it is present.

After doing this, Gordon will leave a .context JSON file at the root of your lambda package. You can use your
language of choice to read and use it.

In the following example, we use python to read this file.

import json

def handler(event, context):
with open('.context', 'r') as f:

50 Chapter 2. Documentation



Gordon Documentation, Release 0.7.0

gordon_context = json.loads(f.read())
return gordon_context['database_host'] # Echo the database host

Same example, but written in Javascript:

var gordon_context = JSON.parse(require('fs').readFileSync('.context', 'utf8'));

exports.handler = function(event, context) {
context.succeed(gordon_context['database_host']); // Echo the database host

};

And Java:

// Remember to add 'org.json:json:20160212' to your gradle file
package example;

import java.io.FileNotFoundException;
import java.util.Scanner;
import java.io.File;
import com.amazonaws.services.lambda.runtime.Context;
import org.json.JSONObject;

public class Hello {

public static class EventClass {
public EventClass() {}

}

public String handler(EventClass event, Context context) throws
→˓FileNotFoundException{

JSONObject gordon_context = new JSONObject(
new Scanner(new File(".context")).useDelimiter("\\A").next()

);
return gordon_context.getString("database_host");

}

}

2.6.2 Advanced contexts

For obvious reasons, hardcoding context values in your project/settings.yml file is quite limited and not very
flexible. For this reason Gordon allows you to make the value of any of the context variables reference any parameter.

In the following example, we are going to make all three variables point to three respective parameters. This will allow
us to change the value of the context variables easily between stages or regions.

---
project: my-project
default-region: eu-west-1
code-bucket: my-bucket
apps:

...
contexts:

default:

2.6. Contexts 51



Gordon Documentation, Release 0.7.0

database_host: ref://DatabaseHost
database_username: ref://DatabaseUsername
database_password: ref://DatabasePassword

...

Now we only need to define what is the value for each of these parameters creating (for example) a parameters/
common.yml file

---
DatabaseHost: 10.0.0.1
DatabaseUsername: "{{ stage }}-bob"
DatabasePassword: env://MY_DATABASE_PASSWORD

As you can see this is quite a fancy example, because values are now dynamically generated.

Parameter Value
DatabaseHost This is a fixed hardcoded value 10.0.0.1.
DatabaseUsernameThis is a jinja2 parameter. If we apply our project into a stage called prod it’s value will be

prod-bob
DatabasePasswordThis parameter will have as value whatever the MY_DATABASE_PASSWORD env variable

has when you apply your project.

Now you should have a basic understanding of how contexts works. If you want to learn more about parameters
you’ll find all the information you need in:

• Parameters How parameters works

• Advanced Parameters Advanced usages of parameters.

2.7 Running lambdas locally

While developing lambdas it is quite useful to be able to run lambdas locally and see how they behave when receiving
certain events. This should not be consider a replacement for writing tests - You should write tests for your code!

In order to locally invoke your lambdas you can do so by running:

$ echo '{... JSON ...}' | gordon run APP.LAMBDA

Gordon expects stdin to be the json formated event your lambda will receive. It is important to note that your lambda
will be executed after collecting all resources and applying the full build process, so you can expect dependencies
to be available.

2.7.1 Python lambdas

Python lambdas don’t require any specific setup, but you should keep in mind the limitations of of the mock
LambdaContext object that gordon uses as second argument of your lambda. You can find the current imple-
mentation Python Loader.

We’ll try to make this mock more clever overtime. PR Welcome!

2.7.2 Node Lambdas

Node lambdas don’t require any specific setup, but you should keep in mind the limitations of of the mock
LambdaContext object that gordon uses as second argument of your lambda. You can find the current imple-

52 Chapter 2. Documentation

https://github.com/jorgebastida/gordon/blob/master/gordon/loaders/python.py


Gordon Documentation, Release 0.7.0

mentation Node Loader.

We’ll try to make this mock more clever overtime. PR Welcome!

2.7.3 Java Lambdas

Java lambdas require you to write an adapter which accepts a String as the first argument and Context as second.

package example;

import com.amazonaws.services.lambda.runtime.Context;
import org.json.JSONObject;

public class Hello {

public static class EventClass {

...

public EventClass(String key1, String key2, String key3) {
this.key1 = key1;
this.key2 = key2;
this.key3 = key3;

}

}

public String handler(EventClass event, Context context) {
System.out.println("value1 = " + event.key1);
System.out.println("value2 = " + event.key2);
System.out.println("value3 = " + event.key3);
return String.format(event.key1);

}

public String handler(String json_event, Context context) {
JSONObject event_data = new JSONObject(json_event);
EventClass event = new EventClass(

event_data.getString("key1"),
event_data.getString("key2"),
event_data.getString("key3")

);
return this.handler(event, context);

}

}

As you can see we have defined an adapter with the following signature public String handler(String
json_event, Context context) which calls our lambda handler after creating a EventClass instance
using the data from the json in json_event.

In a similar way than Python and Javascript lambdas you should keep in mind the limitations of of the MockContext
object that gordon uses as second argument of your lambda. You can find the current implementation Java Loader.

We’ll try to make this mock more clever overtime. PR Welcome!

2.7. Running lambdas locally 53

https://github.com/jorgebastida/gordon/blob/master/gordon/loaders/node.js
https://github.com/jorgebastida/gordon/blob/master/gordon/loaders/java/src/main/java/gordon/GordonLoader.java


Gordon Documentation, Release 0.7.0

2.8 Running lambdas in AWS

Once you have deployed your lambdas to AWS, it might me interesting for you to run them from your command line.
After running $ gordon apply, you’ll get the full arn of each of the lambdas you deployed.

In order to do so, you can use the official aws-cli tool

$ aws lambda invoke \
--function-name $ARN \
--log-type Tail \
--payload '{"key1":"value1", "key2":"value2", "key3":"value3"}' \
output.txt \
| jq -r .LogResult | base64 --decode

As you can see we use jq in order to slice the output JSON and base64 to decode it.

54 Chapter 2. Documentation



CHAPTER 3

In detail

In detail explanations and advanced use cases.

3.1 Settings

Gordon settings.yml files are simple yaml files which define how Gordon should behave.

Settings can be defined at two different levels, project and application level.

Resources such as lambdas or event sources can be defined in both levels, but there are some other settings which are
only expected at project level.

3.1.1 General

These settings can be defined either at project or app level.

55

http://yaml.org/


Gordon Documentation, Release 0.7.0

Settings Description
lambdas Lambda definitions. Anatomy of Lambdas
cron CloudWatch Events definitions. Anatomy of Cron integration
dynamodb Dynamodb Event Source definitions. Anatomy of Dynamodb integration
kinesis Kinesis Event Source definitions. Anatomy of Kinesis integration
s3 S3 notfication definitions. Anatomy of S3 integration
apigateway API Gateway definitions. Anatomy of Api Gateway integration
aws-account-idAWS account id where you are deploying your lambdas. If not present, gordon will try to

retrieve it using IAM api.

3.1.2 Project settings

Project settings are defined in the root level of your project (project/settings.yml). The section Project
Anatomy will give you more information about how you can customize your project.

3.1.3 Application settings

Application settings are defined within your applications (application/settings.yml).

One particularity about application settings, is that those can be redefined as part of it’s initialization. If for example
you want to reuse one application and redefining some settings, you can do so:

---
project: my-project
default-region: eu-west-1
code-bucket: my-bucket
apps:

- exampleapp
- exampleapp:

a: b
c: d

...

3.2 Advanced Parameters

It is great that you can abstract your project to use different parameters on each stage, but sometimes the fact that those
parameters are static makes quite hard to describe your needs.

There are two ways you can customize your parameters further, Protocols and Templates.

3.2.1 Protocols

Protocols are helpers which will allows you to make the value of one parameter be dynamic. Protocols are evaluated
on apply time.

Environment Variables

You can make the value of your parameter be based on any environment variable using the env:// protocol.

56 Chapter 3. In detail



Gordon Documentation, Release 0.7.0

---
MyParameter: env://MY_ENV_VARIABLE

gordon will make the parameter MyParameter value be whatever MY_ENV_VARIABLE value is on apply time.

Dynamodb

You can dynamically lookup for dynamodb tables which name starts with, ends with or matches certain text.

Name Description
dynamodb-startswith:// Table name startswith certain text
dynamodb-endswith:// Table name ends with certain text
dynamodb-match:// Table name match certain regular expression

Example:

---
MyParameter: dynamodb-startswith://clients-

gordon will make the parameter MyParameter value be the full name of the table which name starts with
clients-.

If several (or none) dynamodb tables match any of these criterias, gordon will fail before trying to apply this project.

Dynamodb Streams

You can dynamically lookup for dynamodb streams which table name starts with, ends with or matches certain text.

Name Description
dynamodb-stream-startswith:// Table name startswith certain text
dynamodb-stream-endswith:// Table name ends with certain text
dynamodb-stream-match:// Table name match certain regular expression

Example:

---
MyParameter: dynamodb-stream-startswith://clients-

gordon will make the parameter MyParameter value be the ARN of the stream of which table name starts with
clients-.

If several (or none) dynamodb tables match any of these criterias, gordon will fail before trying to apply this project.

Kinesis

You can dynamically lookup for kinesis streams which name starts with, ends with or matches certain text.

Name Description
kinesis-startswith:// Kinesis stream name startswith certain text
kinesis-endswith:// Kinesis stream name ends with certain text
kinesis-match:// Kinesis stream name match certain regular expression

Example:

---
MyParameter: kinesis-startswith://events-

3.2. Advanced Parameters 57



Gordon Documentation, Release 0.7.0

gordon will make the parameter MyParameter value be the full name of the table which name starts with events-.

If several (or none) kinesis streams match any of these criterias, gordon will fail before trying to apply this project.

3.2.2 Jinja2 Templates

If you want to customize your parameter values even further, you can use jinja2 syntax to customize the value of your
parameters.

The context gordon will provide to this jinja helper is:

• stage: The name of the stage where you are applying your project.

• aws_region: The name of the AWS_REGION where you are applying your project.

• aws_account_id: The ID of the account that you are using to apply your project.

• env: All available environment variables.

Example:

---
MyBucket: "company-{{ stage }}-images"

There are lot’s of things you can do with Jinja2. For more information Jinja2 Template Designer Documentation

3.3 gordon.contrib

When using gordon, you’ll quickly see contrib apps take an important role while deploying and wiring your lamb-
das.

Gordon uses CloudFormation a lot. It is a great AWS service, but it’s API doesn’t always include the latest
services AWS is releasing almost every week! These services will eventually make it into CloudFormation, but in
the meantime we need to use low-level APIs to interact with them.

We could (as some other projects) decide to fill the gaps streaming API commands... but we decided to do things
differently.

We believe CloudFormation is the way to move forward, and the advantages it provides surpass some of the
gotchas, so we decided to fill the gaps using Lambdas and custom CloudFormation resources.

But... how could you use Lambdas and CloudFormation to create Lambdas in CloudFormation?

Easy - eating your own dog food; That’s gordon.contrib!

gordon.contrib is a set of reusable gordon applications your gordon projects use to be able to deploy your
resources and fill the gaps in CloudFormation until AWS fills them.

3.3.1 When will AWS allow us to create those resources “natively”?

We have no idea, but we have make a big effort trying to make our Custom CloudFormation resources look as sim-
ilar as possible to what we think those resources will look like. Once AWS releases those APIs in CloudFormation,
subsequent versions of gordon will stop using our lambda-based Resources and use native ones.

58 Chapter 3. In detail

http://jinja.pocoo.org/docs/dev/templates/#filters


Gordon Documentation, Release 0.7.0

3.3.2 Available contrib apps

contrib.lambdas

This application exposes two CloudFormation resources:

• version: Creates Versions for our lambda functions. Nothing super fancy under the hood: https://github.com/
jorgebastida/gordon/blob/master/gordon/contrib/lambdas/version/version.py

contrib.s3

This application exposes one CloudFormation resource:

• bucket_notification_configuration: This resource allows us to manage S3 bucket notifications. This is a com-
plex resource because the API AWS has develop around... it is not very nice (imho). You can see more details
here: https://github.com/jorgebastida/gordon/blob/master/gordon/contrib/s3/bucket_notification_configuration/
bucket_notification_configuration.py

contrib.helpers

This application exposes one simple CloudFormation resource called Sleep. Yes, this is lame ¯\_()_/¯ but it
was the only possible way to make resilient integrations with streams such as kinesis and dynamodb.

This is because the IAM role of the lambda is not propagated fast enough uppon creation, and CloudFormation
checks if the referenced lambda has permission to consume this stream on creation time. A small sleep fixes the
problem. We will probably try fix this in the future with a generic make-sure-this-is-ready lambda.

3.4 Setup AWS Credentials

There are few ways and things to consider in order to configure your AWS credentials in your machine.

• http://docs.aws.amazon.com/cli/latest/userguide/cli-chap-getting-started.html

• http://docs.aws.amazon.com/general/latest/gr/aws-access-keys-best-practices.html

• https://boto3.readthedocs.io/en/latest/guide/configuration.html

3.5 FAQ

3.5.1 Why my project has some lambdas I’ve not defined?

You’ll get an in-depth explanation of what these lambdas are in the gordon.contrib section, but the tl;dr version is that
gordon needs those in order to be able to only use CloudFormation to create your resources.

3.5.2 Why gordon don’t let me create other resources

Because it would be a terrible idea.

3.4. Setup AWS Credentials 59

https://github.com/jorgebastida/gordon/blob/master/gordon/contrib/lambdas/version/version.py
https://github.com/jorgebastida/gordon/blob/master/gordon/contrib/lambdas/version/version.py
https://github.com/jorgebastida/gordon/blob/master/gordon/contrib/s3/bucket_notification_configuration/bucket_notification_configuration.py
https://github.com/jorgebastida/gordon/blob/master/gordon/contrib/s3/bucket_notification_configuration/bucket_notification_configuration.py
http://docs.aws.amazon.com/cli/latest/userguide/cli-chap-getting-started.html
http://docs.aws.amazon.com/general/latest/gr/aws-access-keys-best-practices.html
https://boto3.readthedocs.io/en/latest/guide/configuration.html


Gordon Documentation, Release 0.7.0

3.5.3 How can I read the logs generated by my Lambdas?

There are two options:

• You can read them online in your CloudWatch Logs Console.

• You can use awslogs from your command line.

60 Chapter 3. In detail

https://console.aws.amazon.com/cloudwatch/home?#logs:
https://github.com/jorgebastida/awslogs


CHAPTER 4

Tutorials

If you like step by step tutorials... this is your place!

4.1 My first Javascript Lambda

In this example we are going to create our first javascript lambda using gordon. This lambda is going to do the same
than the Hello World example AWS provides as blueprint. This is:

• Receive an input message

• Log key1, key2 and key3 values.

• Return key1 as result.

The test message we’ll use to test this function is the following:

{
"key3": "value3",
"key2": "value2",
"key1": "value1"

}

Before we start, make sure you have:

• An AWS Account

• You’ve setup your AWS credentials in your machine (Setup AWS Credentials)

• Gordon is installed (Installation)

4.1.1 Create your Project

From the command line, cd into a directory where you’d like to store your code, then run the following command:

61



Gordon Documentation, Release 0.7.0

$ gordon startproject hellojs

This will create a hellojs directory in your current directory with the following structure:

hellojs
- settings.yml

This is the minimal layout of a project. We are now going to create an application.

4.1.2 Create your Application

Run the following command from the command line:

$ gordon startapp firstapp --runtime=js

This will create a firstapp directory inside your project with the following structure:

firstapp/
- helloworld.js
- settings.yml

By default, when you create a new application, gordon will create one really simple lambda called helloworld.

In the next step we’ll install your application

4.1.3 Install your application

In order to install your application you need to add it to the apps list in the project settings.yml.

Edit your project settings.yml file and add firstapp to the list of installed apps.

---
project: hellojs
default-region: us-east-1
apps:

- gordon.contrib.helpers
- gordon.contrib.lambdas
- firstapp

In the next step we are going to make the default lambda gordon provides, do what we want it to do.

4.1.4 Create your Lambda

Open you firstapp/helloworld.js file and edit it until it looks to something like this:

exports.handler = function(event, context) {
console.log('value1 =', event.key1);
console.log('value2 =', event.key2);
console.log('value3 =', event.key3);
context.succeed(event.key1); // Echo back the first key value

};

The code of our lambda is ready! We only need to double check it is correctly registered.

Open your firstapp/settings.yml. It should look similar to this:

62 Chapter 4. Tutorials



Gordon Documentation, Release 0.7.0

lambdas:
helloworld:
code: helloworld.js
#description: Simple functions in js which says hello
#handler: handler
#role:
#memory:

This file is simply registering a lambda called helloworld, and telling gordon the source of the lambda is in
helloworld.js file.

The default behaviour for gordon is to assume the function to call in your source file is called handler. You can
change this behaviour by changing the handler section in your lambda settings.

Now we are ready to build your project!

4.1.5 Build your project

In the root of your project run the following command

$ gordon build

This command will have an output similar to:

$ gordon build
Loading project resources
Loading installed applications

contrib_helpers:
X sleep

contrib_lambdas:
X alias
X version

firstapp:
X helloworld

Building project...
X 0001_p.json
X 0002_pr_r.json
X 0003_r.json

If that’s the case... great! Your project is ready to be deployed.

4.1.6 Deploy your project

Projects are deployed by calling the command apply. Apply will assume by default you want to deploy your project
into a new stage called dev.

Stages are 100% isolated deployments of the same project. The idea is that the same project can be deployed in the
same AWS account in different stages (dev, staging, production...) in order to SAFELY test your lambda
behaviour.

If you don’t provive any stage using --stage=STAGE_NAME a default stage called dev will be used.

Once you are ready, call the following command:

$ gordon apply

4.1. My first Javascript Lambda 63



Gordon Documentation, Release 0.7.0

This command will have an output similar to:

$ gordon apply
Applying project...

0001_p.json (cloudformation)
CREATE_COMPLETE waiting... -

0002_pr_r.json (custom)
X code/contrib_helpers_sleep.zip (364c5f6d)
X code/contrib_lambdas_alias.zip (e906090e)
X code/contrib_lambdas_version.zip (c3137e97)
X code/firstapp_helloworld.zip (db6f502e)

0003_r.json (cloudformation)
CREATE_COMPLETE

And you are done! Your lambda is ready to be used on AWS!

4.1.7 Test your Lambda

In order to test it, you can navigate into your Lambda Console and:

• Click on the lambda we have just created. It should be called something like:
dev-hellojs-r-FirstappHelloworld-XXXXXXXX

• Click the blue button named Test

• Select the Hello World Sample event template (It should come selected by default)

• Click Save and Test

• You should get a succeed message: Execution result: succeeded, and some log information.

Congratulations! You’ve just deployed your first lambda into AWS using gordon!

4.2 My first Python Lambda

In this example we are going to create our first python lambda using gordon. This lambda is going to do the same than
the Hello World example AWS provides as blueprint. This is:

• Receive an input message

• Log key1, key2 and key3 values.

• Return key1 as result.

The test message we’ll use to test this function is the following:

{
"key3": "value3",
"key2": "value2",
"key1": "value1"

}

Before we start, make sure you have:

• An AWS Account

• You’ve setup your AWS credentials in your machine (Setup AWS Credentials)

• Gordon is installed (Installation)

64 Chapter 4. Tutorials

https://console.aws.amazon.com/lambda/home?#/functions


Gordon Documentation, Release 0.7.0

4.2.1 Create your Project

From the command line, cd into a directory where you’d like to store your code, then run the following command:

$ gordon startproject hellopython

This will create a hellopython directory in your current directory with the following structure:

hellopython
- settings.yml

This is the minimal layout of a project. We are now going to create an application.

4.2.2 Create your Application

Run the following command from the command line:

$ gordon startapp firstapp

This will create a firstapp directory inside your project with the following structure:

firstapp/
- helloworld.py
- settings.yml

By default, when you create a new application, gordon will create one really simple lambda called helloworld.

In the next step we’ll install your application

4.2.3 Install your application

In order to install your application you need to add it to the apps list in the project settings.yml.

Edit your project settings.yml file and add firstapp to the list of installed apps.

---
project: hellopython
default-region: us-east-1
apps:

- gordon.contrib.helpers
- gordon.contrib.lambdas
- firstapp

In the next step we are going to make the default lambda gordon provides, do what we want it to do.

4.2.4 Create your Lambda

Open you firstapp/helloworld.py file and edit it until it looks to something like this:

from __future__ import print_function
import json

def handler(event, context):
print("value1 = " + event['key1'])
print("value2 = " + event['key2'])

4.2. My first Python Lambda 65



Gordon Documentation, Release 0.7.0

print("value3 = " + event['key3'])
return event['key1'] # Echo back the first key value

The code of our lambda is ready! We only need to double check it is correctly registered.

Open your firstapp/settings.yml. It should look similar to this:

lambdas:
helloworld:
code: helloworld.py
#description: Simple functions in python which says hello
#handler: handler
#role:
#memory:

This file is simply registering a lambda called helloworld, and telling gordon the source of the lambda is in
helloworld.py file.

The default behaviour for gordon is to assume the function to call in your source file is called handler. You can
change this behaviour by changing the handler section in your lambda settings.

Now we are ready to build your project!

4.2.5 Build your project

In the root of your project run the following command

$ gordon build

This command will have an output similar to:

$ gordon build
Loading project resources
Loading installed applications

contrib_helpers:
X sleep

contrib_lambdas:
X alias
X version

firstapp:
X helloworld

Building project...
X 0001_p.json
X 0002_pr_r.json
X 0003_r.json

If that’s the case... great! Your project is ready to be deployed.

4.2.6 Deploy your project

Projects are deployed by calling the command apply. Apply will assume by default you want to deploy your project
into a new stage called dev.

Stages are 100% isolated deployments of the same project. The idea is that the same project can be deployed in the
same AWS account in different stages (dev, staging, production...) in order to SAFELY test your lambda
behaviour.

66 Chapter 4. Tutorials



Gordon Documentation, Release 0.7.0

If you don’t provive any stage using --stage=STAGE_NAME a default stage called dev will be used.

Once you are ready, call the following command:

$ gordon apply

This command will have an output similar to:

$ gordon apply
Applying project...

0001_p.json (cloudformation)
CREATE_COMPLETE waiting... -

0002_pr_r.json (custom)
X code/contrib_helpers_sleep.zip (364c5f6d)
X code/contrib_lambdas_alias.zip (e906090e)
X code/contrib_lambdas_version.zip (c3137e97)
X code/firstapp_helloworld.zip (db6f502e)

0003_r.json (cloudformation)
CREATE_COMPLETE

And you are done! Your lambda is ready to be used on AWS!

4.2.7 Test your Lambda

In order to test it, you can navigate into your Lambda Console and:

• Click on the lambda we have just created. It should be called something like:
dev-hellopython-r-FirstappHelloworld-XXXXXXXX

• Click the blue button named Test

• Select the Hello World Sample event template (It should come selected by default)

• Click Save and Test

• You should get a succeed message: Execution result: succeeded, and some log information.

Congratulations! You’ve just deployed your first lambda into AWS using gordon!

4.2. My first Python Lambda 67

https://console.aws.amazon.com/lambda/home?#/functions

	First Steps
	Installation
	Quickstart

	Documentation
	Project
	Lambdas
	Lambda Requirements
	Event Sources
	Parameters
	Contexts
	Running lambdas locally
	Running lambdas in AWS

	In detail
	Settings
	Advanced Parameters
	gordon.contrib
	Setup AWS Credentials
	FAQ

	Tutorials
	My first Javascript Lambda
	My first Python Lambda


